- Curvature and Poincaré Metrics

نویسنده

  • ROBIN GRAHAM
چکیده

This article presents a new definition of Branson’s Q-curvature in even dimensional conformal geometry. The Q-curvature is a generalization of the scalar curvature in dimension 2: it satisfies an analogous transformation law under conformal rescalings of the metric and on conformally flat manifolds its integral is a multiple of the Euler characteristic. Our approach is motivated by the recent work [GZ]; we derive the Q-curvature as a coefficient in the asymptotic expansion of the formal solution of a boundary problem at infinity for the Laplacian in the Poincaré metric associated to the conformal structure. This gives an easy proof of the result of [GZ] that the log coefficient in the volume expansion of a Poincaré metric is a multiple of the integral of the Q-curvature, and leads to a definition of a non-local version of the Q-curvature in odd dimensions. The Q-curvature is intimately connected with a family of conformally invariant differential operators generalizing the conformal Laplacian ∆+ n−2 4(n−1) R, for which the scalar curvature arises as the zeroth order term. (Our sign convention is such that ∆ is a positive operator.) The next operator in the family was discovered by Paneitz [Pa] and has the same principal part as ∆. Branson and Ørsted [BØ] observed that the zeroth order term of Paneitz’ operator gives rise to the quantity Q = (∆R +R − 3|Ric|)/6

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature and Uniformization

We approach the problem of uniformization of general Riemann surfaces through consideration of the curvature equation, and in particular the problem of constructing Poincaré metrics (i.e., complete metrics of constant negative curvature) by solving the equation ∆u−e = K0(z) on general open surfaces. A few other topics are discussed, including boundary behavior of the conformal factor e giving t...

متن کامل

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

On Randers metrics of reversible projective Ricci curvature

projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf

متن کامل

Asymptotic Properties of Extremal Kähler Metrics of Poincaré Type

Consider a compact Kähler manifold X with a simple normal crossing divisor D, and define Poincaré type metrics on X\D as Kähler metrics on X\D with cusp singularities along D. We prove that the existence of a constant scalar curvature (resp. an extremal) Poincaré type Kähler metric on X\D implies the existence of a constant scalar curvature (resp. an extremal) Kähler metric, possibly of Poincar...

متن کامل

Q-curvature and Poincaré Metrics

This article presents a new definition of Branson’s Q-curvature in even dimensional conformal geometry. The Q-curvature is a generalization of the scalar curvature in dimension 2: it satisfies an analogous transformation law under conformal rescalings of the metric and on conformally flat manifolds its integral is a multiple of the Euler characteristic. Our approach is motivated by the recent w...

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008